Congestion and the numerical fundamental diagram: long narrowing, $\varepsilon = 0.1$.

Section 4.2; Figure 5.

Influx, outflux, and no-flux boundary conditions (respectively, on the left, right, and remaining boundaries). $x\in(0,1)$, $y\in(0,1.5)$, $t\in(0,5)$. $\varepsilon = 0.1$. $\rho_{\textrm{In}} = 0.5$.

Second-order scheme. $M_x=512$, $M_y=256$, $\Delta x= \Delta y=2^{-9}$, $\Delta t=\Delta x$.

Crowd density, $\rho$.

Flux ($x$-component), $J_1$.

Pedestrian models with congestion effects

Pedro Aceves-Sánchez · Rafael Bailo · Pierre Degond · Zoé Mercier
Mathematical Models and Methods in Applied Sciences, 34 (6), 2024.


Back to simulations menu
Back to publication