Processing math: 100%

Comparison of first and second-order schemes: physical velocity, u.

Section 4.1.2; Figures 10, 11, 12.

Physical velocity, u. First and second-order schemes. Periodic boundary conditions. x(0,1). ε=103.

Δt=Δx/16.

M=32, Δx=25.

00.20.40.60.810.10.20.30.40.50.60.70.80.9
First orderSecond orderDatumxu

M=64, Δx=26.

00.20.40.60.810.10.20.30.40.50.60.70.80.9
First orderSecond orderDatumxu

M=128, Δx=27.

00.20.40.60.810.10.20.30.40.50.60.70.80.9
First orderSecond orderDatumxu

M=256, Δx=28.

00.20.40.60.810.10.20.30.40.50.60.70.80.9
First orderSecond orderDatumxu

M=512, Δx=29.

00.20.40.60.810.10.20.30.40.50.60.70.80.9
First orderSecond orderDatumxu

M=1024, Δx=210.

00.20.40.60.810.10.20.30.40.50.60.70.80.9
First orderSecond orderDatumxu
Pedestrian models with congestion effects

Pedro Aceves-Sánchez · Rafael Bailo · Pierre Degond · Zoé Mercier
Mathematical Models and Methods in Applied Sciences, 34 (6), 2024.


Back to simulations menu
Back to publication