$\rho$ is the density, $u$ is the velocity, $J$ is the flux.
Weidmann (1993), Seyfried, Steffen, Klingsch, Boltes (2005), Cao, Seyfried, Zhang, Holl, Song (2017).
$$ \pt\rho + \px(\rho u_{\text{FD}}(\rho)) = 0, $$or, defining $J_{\text{FD}}(\rho) = \rho u_{\text{FD}}(\rho)$,$$ \pt\rho + J'_{\text{FD}}(\rho) \px\rho = 0. $$Information propagates at speed $ J'_{\text{FD}}(\rho) - u_{\text{FD}}(\rho) = \rho u'_{\text{FD}}(\rho) \leq 0 .$
Lighthill, Whitham (1955), Richards (1956).
$$ \begin{cases} \pt\rho + \px(\rho u) = 0, \\ \pt u + u \px u = -\frac{1}{\tau} \left( u - u_{\text{FD}}(\rho) + \frac{\nu}{\rho}\px\rho \right) , \quad \tau>0, \nu>0. \end{cases} $$The $\px \rho$ term on the second equation is an attempt to model congestion.
Payne (1971), Whitham (1974).
For some increasing function $p(\rho)$, rewrite previous model as$$ \begin{cases} \pt\rho + \px(\rho u) = 0, \\ \pt u + u \px u + \frac{\nu}{\rho}\px p(\rho) = -\frac{1}{\tau} ( u - u_{\text{FD}}(\rho) ) , \quad \tau>0, \nu>0. \end{cases} $$
Characteristic speeds are $u\pm \nu\sqrt{p'(\rho)}$: information can reach drivers from behind!
Daganzo (1995).
A new model:$$ \begin{cases} \pt\rho + \px(\rho u) = 0, \\ (\pt + u \px) (u + p(\rho)) = 0. \end{cases} $$$p(\rho)$ is an increasing function, the pseudo-pressure (think of $p(\rho)=\rho^\gamma$ for $\gamma>0$).
Characteristic speeds are $u$ and $u - \rho p'(\rho)$.
Aw, Rascle (2000).
Make the pseudo-pressure singular, and rescale:$$ \begin{cases} \pt\rho + \px(\rho u) = 0, \\ (\pt + u \px) (u + \info{ \eps p(\rho)} ) = 0, \quad 0 < \eps \ll 1, \\ \info{p(\rho)} = ( \rho^{-1} - \rhomax^{-1} ) ^ {-\gamma},\quad \gamma > 0. \end{cases} $$The singular term enforces the capacity constraint $\rho\leq\rhomax$.
Berthelin, Degond, Delitala, Rascle (2008), Berthelin, Degond, Blanc, Moutari, Royer (2008).
Rewrite$$ \begin{cases} \pt\rho + \px(\rho u) = 0, \\ (\pt + u \px) (u + \eps p(\rho)) = 0, \end{cases} $$as$$ \begin{cases} \pt\rho + \px(\rho u) = 0, \\ \info{(\pt + u \px) \omega} = 0, \\ u = \omega - \eps p(\rho). \end{cases} $$
$\omega$, the desired velocity, is advected by the model.
The relation $u = \omega - \eps p(\rho)$ is not dimensionally consistent. A natural alternative is $u = \omega - \eps \info{\grad \phi (\rho)}$. Model becomes$$ \begin{cases} \pt\rho + \div(\rho u) = 0, \\ (\pt + u \cdot \grad) \omega = 0, \\ u = \omega - \eps \grad \phi (\rho), \end{cases} $$for a choice of increasing congestion function $\phi(\rho)$, such as$$ \phi(\rho) = ( \rho^{-1} - \rhomax^{-1} ) ^ {-\gamma},\quad \gamma > 0. $$
Rewrite model in advection-diffusion form,$$ \begin{cases} \pt\rho + \div(\rho \omega) = \eps \div(\rho \grad \phi(\rho)), \\ (\pt + u \cdot \grad) \omega = 0, \\ u = \omega - \eps \grad \phi (\rho). \end{cases} $$
The first equation enforces capacity bound.
The second equation introduces steering behaviour.
We formally derive the model from an agent-based model:$$ \begin{cases} \dot{X}_k(t) = V_k(t), \\ \dot{W}_k(t) = 0, \\ V_k(t) = W_k(t) - \varepsilon \grad\brk{\phi(\rho^R)}(t,X_k), \end{cases} $$where $X_k$, $V_k$, and $W_k$ are, respectively, the position, velocity, and desired velocity of the $k$th agent.
$\rho^R$ is non-local estimator of the density with radius $R$,$$ \rho^R(t,x) = \frac{1}{NR^2} \sum_{k=1}^{N} M\prt{\frac{\abs{x - X_k(t)}}{R}}, $$where $M$ is a symmetric mollifier with unit integral.
$$ \begin{cases} \pt f(t,x,w) + \div\prt{U_f^R f} = 0, \\ U_f^R(t,x,w) = w - \varepsilon \grad\brk{\phi(\rho_f^R)}(t, x), \\ \rho_f^R(t, x) = \frac{1}{R^2} \int_{\Rtwo\times\Rtwo} M\prt{\frac{\abs{x - y}}{R}} f(t,y,w) \dy \dw. \end{cases} $$
$$ \begin{cases} \pt f + \div\prt{U_f f} = 0, \\ U_f(t,x,w) = w - \varepsilon \grad\brk{\phi(\rho_f)}(t, x), \\ \rho_f(t, x) = \int_{\Rtwo} f(t,x,w) \dw. \end{cases} $$
The local kinetic model admits a measure-valued solution$$ \mu(t,x,w) = \sum_{i=1}^{P} \rho\i(t,x) \delta(w - \omega\i(t,x)) $$if $(\rho_i,\omega_i)$ satisfy the multi-fluid model$$ \begin{cases} \pt \rho\i + \div\prt{\rho\i u\i} = 0, \\ \pt \omega\i + \prt{u\i\cdot\grad}\omega\i = 0, \\ u\i = \omega\i - \eps \grad\phi(\rho), \\ \rho = \sum_{i=1}^{P} \rho\i. \end{cases} $$
Model in conservative variables $(\rho,q = \rho\omega)$ (1D):$$ \begin{cases} \pt\rho + \px q = \eps \px(\rho \px \phi(\rho)), \\ \pt q + \px (\rho^{-1}q^2) = \eps \px(q \px \phi(\rho)). \end{cases} $$
Diffusion coefficient in the first equation is $\eps\rho\phi'(\rho)$. Near congestion, when $\rhomax-\rho\sim\eps$, it is$$ \eps\rho\phi'(\rho) = \eps\gamma\rho^\gamma\left( 1 - \frac{\rho}{\rhomax} \right)^{-(\gamma+1)} \sim \eps^{-\gamma}. $$
A naïve numerical treatment will require a CFL condition, $\info{\Dt \sim \eps^{\gamma} \Dx^2}$.
Model in conservative variables (1D):$$ \begin{cases} \pt\rho + \px q = \eps \px(\rho \px \phi(\rho)), \\ \pt q + \px (\rho^{-1}q^2) = \eps \px(q \px \phi(\rho)). \end{cases} $$
Recall $q = \rho \omega$ and the equation for $\omega$,$$ \pt \omega + \omega \px \omega = \eps \px \phi(\rho) \px\omega. $$Ignoring diffusive effects, $\omega$ satisfies Burgers' equation. It tends to develop shocks, which correspond to delta-shock waves on the density equation.
Without specialised schemes, the bound $\rho\leq\rhomax$ will not hold.
$$ \begin{align} & \frac{\rho\np - \rho\n}{\Dt} + \px \prt{\rho\n \omega\n} = \varepsilon\px \prt{\rho\n \info{\px\phi\np}}, \\& \frac{q\np - q\n}{\Dt} + \px \prt{q\n \omega\n} = \varepsilon\px \prt{q\n \info{\px\phi\np}}, \\& q\n = \rho\n \omega\n, \\& \phi\n = \phi\prt{\rho\n}, \\& \phi\prt{\rho} = \prt{\rho^{-1} - \rho_{\text{max}}^{-1}}^{-\gamma}. \end{align} $$
The equation for the density becomes$$ -\varepsilon\Dt\px \prt{\rho\n \px\phi\np} + \rho\prt{\phi\np} = \rho\n - \Dt\px \prt{\rho\n \omega\n}, $$where $\rho(\phi)$ is the inverse of $\phi(\rho)$. Existence and well-posedness of $\phi\np$ holds provided the RHS is positive. This will hold for sufficiently small $\Dt$, independently of $\eps$.
Once $\phi\np$ is found, the update of $q\np$ is explicit.
Finite-volume discretisation:$$ \begin{cases} \pt\rho + \px q = \eps \px(\rho \px \phi(\rho)), \\ \pt q + \px (\rho^{-1}q^2) = \eps \px(q \px \phi(\rho)), \end{cases} $$becomes$$ \begin{align} & \frac{\rho\i\np - \rho\i\n}{\Dt} + \frac{F\ih\n - F\imh\n}{\Dx} = \eps \frac{D\ih\np - D\imh\np}{\Dx}, \\& \frac{q\i\np - q\i\n}{\Dt} + \frac{G\ih\n - G\imh\n}{\Dx} = \eps \frac{C\ih\np - C\imh\np}{\Dx}. \end{align} $$
$$ \begin{align} & \frac{\rho\i\np - \rho\i\n}{\Dt} + \info{\frac{F\ih\n - F\imh\n}{\Dx}} = \eps \frac{D\ih\np - D\imh\np}{\Dx}, \\& \frac{q\i\np - q\i\n}{\Dt} + \info{\frac{G\ih\n - G\imh\n}{\Dx}} = \eps \frac{C\ih\np - C\imh\np}{\Dx}. \end{align} $$The first-order scheme uses an upwind discretisation for the transport terms:$$ \begin{align} & F\ih\n = \rho\i\n \pos{\omega\ih\n} + \rho\ip\n \neg{\omega\ih\n}, \\& G\ih\n = q\i\n \pos{\omega\ih\n} + q\ip\n \neg{\omega\ih\n}, \\& \omega\ih\n = \frac{\omega\i\n+\omega\ip\n}{2}. \end{align} $$We also construct a second-order flux using a minmod limiter.
$$ \begin{align} & \frac{\rho\i\np - \rho\i\n}{\Dt} + \frac{F\ih\n - F\imh\n}{\Dx} = \eps \info{\frac{D\ih\np - D\imh\np}{\Dx}}, \\& \frac{q\i\np - q\i\n}{\Dt} + \frac{G\ih\n - G\imh\n}{\Dx} = \eps \info{\frac{C\ih\np - C\imh\np}{\Dx}}. \end{align} $$The schemes use a (second-order) centred discretisation for the diffusion:$$ \begin{align} & D\ih\np = \frac{\prt{\rho\i\n+\rho\ip\n}\prt{\phi\ip\np - \phi\i\np}}{2\Dx}, & C\ih\np = \frac{\prt{q\i\n+q\ip\n}\prt{\phi\ip\np - \phi\i\np}}{2\Dx}. \end{align} $$
The equation for the density becomes$$ -\varepsilon\Dt \frac{D\ih\np - D\imh\np}{\Dx} + \rho\prt{\phi\i\np} = \rho\i\n - \Dt \frac{F\ih\n - F\imh\n}{\Dx}, $$where $\rho(\phi)$ is the inverse of $\phi(\rho)$. Existence and well-posedness of $\phi\np$ holds provided the RHS is positive, which only requires a hyperbolic-like CFL, $\Dt\sim\Dx$, independent of $\eps$.
Once $\phi\i\np$ is found, the update of $q\i\np$ is explicit.
A simple test case that develops congestion:$$ \begin{cases} \rho_0(x) = 0.7, \\ \omega_0(x) = 0.5 - 0.4\sin(2\pi x). \end{cases} $$
Same test case. $M=2^{10}$ points.
Same test case. $M=2^{10}$ points.
Perhaps a Saffman–Taylor instability, not clear yet.
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 883363).